Quantification of cholesterol metabolites in the brain by on-tissue derivatization mass spectrometry imaging in a mouse model of Huntington's disease

<u>A. Passoni¹</u>, A. M. Siciliano¹, M. Favagrossa¹, A. Lanno¹, L. Colombo¹, M. Salmona¹, R. Bagnati¹, and E. Davoli¹

1) Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan (Italy)

Huntington's disease (HD) is an autosomal neurodegenerative disorder caused by a mutation of the IT15 gene on chromosome 4 [1], translating for the mutant huntingtin protein (mHTT). mHTT reduces the sterol-regulatory element-binding protein (SREBP) transcription factor translocation, essential for cholesterol (Chol) synthesis, leading to a significant reduction of Chol metabolism in the brain. Notably, different Chol metabolites have been shown to be down-regulated in the brain of R6/2 mice [2].

Here, we proposed a high-resolution imaging-mass spectrometry (IMS) approach, for the study of the spatial distribution of Chol brain metabolites and their simultaneous quantitation using in-house developed software.

In the present study, the whole brain of both WT and R6/2 mice at 12 weeks was employed and three to five sagittal sections were cut and mounted on the target at–20°C as replicates.

The IMS method was developed on an AP-MALDI source (Mass-Tech), installed on an LTQ Orbitrap XLmass spectrometer (Thermo Scientific), and allowed the simultaneous quantitation and spatial distribution study of the free form of 24OHC, Chol, desmosterol, and 7-dehydrocholesterol in the brain.

We set up the IMS method to evaluate the distribution of the selected Chol metabolites in the brain from R6/2 mice, focusing on the striatum, the most affected area by neurodegeneration in HD. Our IMS approach included two-derivatization steps directly on tissue slices that use Chol oxidase and Girard's T reagent and MS/MS experiments. The evidences confirmed the data previously obtained with LC-MS analysis *(unpublished data),* highlighting a significant reduction of desmosterol, 24OHC and chol levels. As desmosterol is a Chol metabolite representative of the Bloch pathway, our results suggested that this is the most affected pathway by HD.

References

1. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Cell. 1993;72(6):971–83 2. Valenza M, Leoni V, Tarditi A, Mariotti C, Björkhem I, Di Donato S, et al. Neurobiol Dis. 2007;28(1):133–42.